If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+-1x-2=0
We add all the numbers together, and all the variables
2x^2+3x=0
a = 2; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·2·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*2}=\frac{-6}{4} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*2}=\frac{0}{4} =0 $
| -14/5=-7v | | 16x2+40x+16=-9 | | 76=4(3x+1) | | 4×2+40x+16=-9 | | 76=(3x+1) | | 16×+40x+16=-9 | | 3x+x/3=200 | | 7x+1.25=43.25 | | 7n+3=-25 | | a/5+2/3=1+1/15 | | -3w/5=-18 | | -3(-3+x)=3 | | 4=-2(1/3x-1) | | 30x=-12 | | -8w=-16/9 | | 6*2+28x-2=2x-10 | | -35=7/2w | | P+2q=6 | | -5/9*u=30 | | 20x-15=×0+9x | | -5/9u=30 | | 9x+6=x^2+4 | | 3(1+x)=30 | | 28−32x=92 | | 4(3k-1)=11k-3(k-4) | | 3+x-2)=99 | | -4u/3=-24 | | (x-3)^2-8=8 | | -14/7=-7u | | 6r2+43r=40 | | -15=15/3u | | 93-v=233 |